
FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Memory

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

NAND

NAND

NOT

Memory or Register Bit
based on a “D Flip-Flop” --- other designs are more efficient

Data In
Data Out

Write

NAND

NAND

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop” --- other designs are more efficient

Data In
Data Out

Write

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop” --- other designs are more efficient

Data In
Data Out

Write

Power is just switched on – everything is at 0 momentarily.

0

0

0
0

0

0

0 0

0 0

0
0

0

0

0

0

0 0

0

0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Logic gates activate – no input yet, and no change in output

1

0

1
0

0

0

0 0

0 1

0
0

1

1

1

0

1 0

1

0

Data out stays at 0No change

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Data In changes, but Write stays at 0 -- no change in output

1

0

1
0

1

0

1 0

1 0

0
0

1

1

1

0

1 0

1

0

Data out stays at 0Data changes to 1

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Data changes back, but Write stays at 0 -- no change in output

1

0

1
0

0

0

0 0

0 1

0
0

1

1

1

0

1 0

1

0

Data out stays at 0Data changes to 0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Data changes again, but Write stays at 0 -- still no change out

1

0

1
0

1

0

1 0

1 0

0
0

1

1

1

0

1 0

1

0

Data out stays at 0Data changes to 1

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Now Write changes to 1 --- the output changes to 1

1

1

0
1

1

1

1 1

1 0

1
0

0

1

0

1

0 1

0

1

Data out changes to 1Write changes to 1

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Write changes back to 0 --- the output stays at 1

1

1

0
0

1

0

1 0

1 0

0
0

1

1

1

1

0 1

0

1

Data out stays at 1Write changes to 0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Data In also changes back to 0, but the output stays at 1
because Write is still 0.

1

1

0
0

0

0

0 0

0 1

0
0

1

1

1

1

0 1

0

1

Data out stays at 1Data changes to 0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

When Write changes to 1 --- the output changes to the input 0

0

0

1
1

0

1

0 0

0 1

1
1

1

0

1

0

1 0

1

0

Data changes to 0Write changes to 1

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Write changes back to 0 --- the output will continue to hold it’s
value, whatever it is.

1

0

1
0

0

0

0 0

0 1

0
0

1

1

1

0

1 0

1

0

Data out stays at 0Write changes to 0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

Even though Data In changes to 1 the output continues to hold
it’s previous value.

1

0

1
0

1

0

1 0

1 0

0
0

1

1

1

0

1 0

1

0

Data out stays at 0Data changes to 1

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

If Write stays at zero, these two pairs of
AND and NOT gates will always output 1,
no matter how the Data In changes. This
means the Flip-Flop will hold its previous

value.

1

0

1
0

1

0

1 0

1 0

0
0

1

1

1

0

1 0

1

0

Data Out
remains the
same.

Write stays at 0

AND NOT

AND NOT

AND NOT

AND NOT

NOT

Memory or Register Bit
based on a “D Flip-Flop”

Data In
Data Out

Write

This is the Flip-Flop part.
As long as the two inputs from the NOT

gates to the left are both 1's, the Flip-Flop
will not change it’s output.

1

0

1
0

1

0

1 0

1 0

0
0

1

1

1

0

1 0

1

0

Data Out
remains the
same.

Write stays at 0

Memory Address Decoding

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Address Decoder

I n p u t f r o m A d d r e s s B u s

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

A d d r e s s B u s

Address Decoder

I n p u t f r o m A d d r e s s B u s

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

A d d r e s s B u s

1 0 1 1 0

1

1

1

0

0 1

1

1 0

1

1
1

11

1

0
1 0

1
1

0

0 1

Bus Control

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Bus Control

I n p u t s F r o m B u s

AND AND AND AND AND

Control Line Input

O u t p u t

All output is 0 if Control Line is 0
Identical to Inputs From Bus if Control Line is 1

Bus Control

I n p u t s F r o m B u s

AND AND AND AND AND

Control Line Input

O u t p u t

All output is 0 if Control Line is 0
Identical to Inputs From Bus if Control Line is 1

0 1 0 1 1

0

00000

0 00 000 01 11

Bus Control

I n p u t s F r o m B u s

AND AND AND AND AND

Control Line Input

O u t p u t

All output is 0 if Control Line is 0
Identical to Inputs From Bus if Control Line is 1

0 1 0 1 1

1

11010

1 10 101 11 11

Incrementor

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Incrementor

O u t p u t
Input number + 1

Carry out

Left bus into ALU

1

Incrementor

O u t p u t
Input number + 1

Carry out

0 0 1 0 1

0 0 0 0 1

0 0 1 0 1

 5

Decimal
equivalent

+ 1

0 0 1 1 0 6

+

0 0 1 1 0

0 1 100

0 100

Left bus into ALU

INC opcode

00101 + 00001

 5 + 1

1

0

Arithmetic and Logic Unit
(ALU)

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

A L U
(Arithmetic and Logic Unit)

Less Than

Greater Than
Less Than or Equal

Not Equal
Equal

Control Lines In

Greater Than or Equal

Inverter

Equality

Inequality (Greater Than)

Five Bit Adder

Incrementer

Left bus into ALU Right bus into ALU

ALU Data Bus OutJump Decision Out

SUB

ADD

Control Lines In
INC

Left bus into ALU Right bus into ALU
Jump Logic Arithmetic

Activate Five Bit Adder

Turn off left bus to
Incrementer crossover

Turn on left bus to
Incrementer crossover

ALU - Invertor

Invertor

O u t p u t

twos complement of the input bus

Bus input

1 1 1 1 1

Invertor

O u t p u t

twos complement of the input bus

Bus input

1 1 1 1 1

0 1 0 10

0 0 1 0 1

1 0 1 01

ALU - Five Bit Adder

Five Bit Adder
Inputs from Left and Right Busses into the ALU

O u t p u t

Accurate addition of two 5-bit binary numbers.

Carry out

Left bus into ALU

Right bus into ALU

Five Bit Adder
Inputs from Left and Right Busses into the ALU

O u t p u t

Accurate addition of two 5-bit binary numbers.

Carry out

1 0 0 1 0

0 0 1 1 1

1 0 0 1 0

0 0 1 1 1

1 8

Decimal
equivalent

+ 7

1 1 0 0 1 2 5

+

1 1 0 0 1

1 0 0

1

1

11

1

0

0

0

0

11

1 1 000

0

Left bus into ALU

Right bus into ALU

ALU – Equality

Equality
Inputs from Left and Right Busses into the ALU

O u t p u t

1 if Left equals Right, 0 otherwise

Left bus into ALU

Right bus into ALU

Equality
Inputs from Left and Right Busses into the ALU

O u t p u t

1 if Left equals Right, 0 otherwise

Left bus into ALU

Right bus into ALU

00

0

01 0011

0

00

0

10

1

11

1

01

1

0

0
1

1

0
0
1
1
0

10

1 0 0 1

1

 01100 = 00101
 12 = 5

 0 1 1 0 0

 0 0 1 0 1

ALU – Greater Than

Inequality – Left > Right
Inputs from Left and Right Busses into the ALU

O u t p u t

1 if Left > Right, 0 otherwise

Left bus into ALU

Right bus into ALU

Inequality – Left > Right
Inputs from Left and Right Busses into the ALU

O u t p u t

1 if Left > Right, 0 otherwise

Left bus into ALU

Right bus into ALU

0 00 0

01

0

0

0 1

1 00 1

111

1 0

0 00 0

010

0 1

1 11 1

001

0 1

0 1

00

0

11

1

01

0

0

0

01

0

00

0

01

0

00

0

00

0

01

0

00

0

01

0

10

1

01

1

01

1

0

0
1

1

0
0
1
1
0

 01100 > 00101
 12 > 5

 0 1 1 0 0

 0 0 1 0 1

1

1

End of ALU

Control Circuitry
Ring Counter

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Ring Counter
based on a “D Flip-Flop” --- other designs are more efficient

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

1

1 0 0 0 0 0
Reset

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

0 1 0 0 0 0

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

0 0 1 0 0 0

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

0 0 0 1 0 0

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

0 0 0 0 1 0

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

0 0 0 0 0 1

Ring Counter
based on a D Flip-Flops

Q

Q
SET

CLR

D

Clock

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

0

1 0 0 0 0 0

Control Circuitry
Fetch

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Fetch Circuitry

Opcode Register in bus enable

Operand Register in bus enable

Opcode Register Write

Program Counter Write

Increment Program Counter

Operand Register Write

Jump Register in bus enable
Jump Register Write

Control Lines Out
Data Bus to Fetch Circuitry Opcode In bus enable

Program Counter to Incrementor bus enable

Q

Q
SET

CLR

D

Clock
in

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Program Counter to Address Bus enable

Detect HALT, INC, and NOT

Detect JMP

Detect all jumps
(JMP, JEQ, JNE,
JLT, JGE, JGT, JLE)

Fetch Opcode

Fetch Opcode

Increment
Program
Counter

Fetch
Operand
Address

Fetch Operand Address

Increment
Program
Counter

Increment
Program
Counter

Fetch
Jump
Address

Fetch Jump Address

Opcode In

If HALT, INC, and
NOT, then reset
the Ring Counter.

If not JEQ, JNE,
JLT, JGE, JGT, or
JLE then reset the
Ring Counter.

If JMP then fetch the
Jump Address
otherwise fetch the
Operand Addreass.

Only JEQ, JNE, JLT,
JGE, JGT, or JLE will
make it to here
because of the resets
at Clock 2 and Clock 4.

Execute
out

J

Q

Q

K

SET

CLR

Clock
pause
during

execute

1

1

Fetch in
(from

execute
circuitry) Ring Counter

Decode to determine
how many additional
fetches are needed.

Fetch Circuitry

Opcode Register in bus enable

Operand Register in bus enable

Opcode Register Write

Program Counter Write

Increment Program Counter

Operand Register Write

Jump Register in bus enable
Jump Register Write

Control Lines Out
Data Bus to Fetch Circuitry Opcode In bus enable

Program Counter to Incrementor bus enable

Q

Q
SET

CLR

D

Clock
in

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Program Counter to Address Bus enable

Detect HALT, INC, and NOT

Detect JMP

Detect all jumps
(JMP, JEQ, JNE,
JLT, JGE, JGT, JLE)

Fetch Opcode

Fetch Opcode

Increment
Program
Counter

Fetch
Operand
Address

Fetch Operand Address

Increment
Program
Counter

Increment
Program
Counter

Fetch
Jump
Address

Fetch Jump Address

Opcode In

If HALT, INC, and
NOT, then reset
the Ring Counter.

If not JEQ, JNE,
JLT, JGE, JGT, or
JLE then reset the
Ring Counter.

If JMP then fetch the
Jump Address
otherwise fetch the
Operand Addreass.

Only JEQ, JNE, JLT,
JGE, JGT, or JLE will
make it to here
because of the resets
at Clock 2 and Clock 4.

Execute
out

J

Q

Q

K

SET

CLR

Clock
pause
during

execute

1

1

Fetch in
(from

execute
circuitry) Ring Counter

Decode to determine
how many additional
fetches are needed.

Fetch Circuitry

Opcode Register in bus enable

Operand Register in bus enable

Opcode Register Write

Program Counter Write

Increment Program Counter

Operand Register Write

Jump Register in bus enable
Jump Register Write

Control Lines Out
Data Bus to Fetch Circuitry Opcode In bus enable

Program Counter to Incrementor bus enable

Q

Q
SET

CLR

D

Clock
in

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Program Counter to Address Bus enable

Detect HALT, INC, and NOT

Detect JMP

Detect all jumps
(JMP, JEQ, JNE,
JLT, JGE, JGT, JLE)

Fetch Opcode

Fetch Opcode

Increment
Program
Counter

Fetch
Operand
Address

Fetch Operand Address

Increment
Program
Counter

Increment
Program
Counter

Fetch
Jump
Address

Fetch Jump Address

Opcode In

If HALT, INC, and
NOT, then reset
the Ring Counter.

If not JEQ, JNE,
JLT, JGE, JGT, or
JLE then reset the
Ring Counter.

If JMP then fetch the
Jump Address
otherwise fetch the
Operand Addreass.

Only JEQ, JNE, JLT,
JGE, JGT, or JLE will
make it to here
because of the resets
at Clock 2 and Clock 4.

Execute
out

J

Q

Q

K

SET

CLR

Clock
pause
during

execute

1

1

Fetch in
(from

execute
circuitry) Ring Counter

Decode to determine
how many additional
fetches are needed.

0

10

Fetch Circuitry

Opcode Register in bus enable

Operand Register in bus enable

Opcode Register Write

Program Counter Write

Increment Program Counter

Operand Register Write

Jump Register in bus enable
Jump Register Write

Control Lines Out
Data Bus to Fetch Circuitry Opcode In bus enable

Program Counter to Incrementor bus enable

Q

Q
SET

CLR

D

Clock
in

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Program Counter to Address Bus enable

Detect HALT, INC, and NOT

Detect JMP

Detect all jumps
(JMP, JEQ, JNE,
JLT, JGE, JGT, JLE)

Fetch Opcode

Fetch Opcode

Increment
Program
Counter

Fetch
Operand
Address

Fetch Operand Address

Increment
Program
Counter

Increment
Program
Counter

Fetch
Jump
Address

Fetch Jump Address

Opcode In

If HALT, INC, and
NOT, then reset
the Ring Counter.

If not JEQ, JNE,
JLT, JGE, JGT, or
JLE then reset the
Ring Counter.

If JMP then fetch the
Jump Address
otherwise fetch the
Operand Addreass.

Only JEQ, JNE, JLT,
JGE, JGT, or JLE will
make it to here
because of the resets
at Clock 2 and Clock 4.

Execute
out

J

Q

Q

K

SET

CLR

Clock
pause
during

execute

1

1

Fetch in
(from

execute
circuitry) Ring Counter

Decode to determine
how many additional
fetches are needed.

Fetch Circuitry

Opcode Register in bus enable

Operand Register in bus enable

Opcode Register Write

Program Counter Write

Increment Program Counter

Operand Register Write

Jump Register in bus enable
Jump Register Write

Control Lines Out
Data Bus to Fetch Circuitry Opcode In bus enable

Program Counter to Incrementor bus enable

Q

Q
SET

CLR

D

Clock
in

Reset

Clock 1

Q

Q
SET

CLR

D

Clock 2

Q

Q
SET

CLR

D

Clock 3

Q

Q
SET

CLR

D

Clock 4

Q

Q
SET

CLR

D

Clock 5

Q

Q
SET

CLR

D

Clock 6

Program Counter to Address Bus enable

Detect HALT, INC, and NOT

Detect JMP

Detect all jumps
(JMP, JEQ, JNE,
JLT, JGE, JGT, JLE)

Fetch Opcode

Fetch Opcode

Increment
Program
Counter

Fetch
Operand
Address

Fetch Operand Address

Increment
Program
Counter

Increment
Program
Counter

Fetch
Jump
Address

Fetch Jump Address

Opcode In

If HALT, INC, and
NOT, then reset
the Ring Counter.

If not JEQ, JNE,
JLT, JGE, JGT, or
JLE then reset the
Ring Counter.

If JMP then fetch the
Jump Address
otherwise fetch the
Operand Addreass.

Only JEQ, JNE, JLT,
JGE, JGT, or JLE will
make it to here
because of the resets
at Clock 2 and Clock 4.

Execute
out

J

Q

Q

K

SET

CLR

Clock
pause
during

execute

1

1

Fetch in
(from

execute
circuitry) Ring Counter

Decode to determine
how many additional
fetches are needed.

0 1 0

SUB opcode

0 1 0 1 1

1 1

1
1

1
0

0
0
1

0

1

1
0

1

1

1
0

0

0

0

0

0

0

0

0

0

0
1

1

0

1

1

Reset

Control Circuitry
Execute

FETCH CIRCUITRY

INCREMENTOR

EXECUTE CIRCUITRY

ARITHMETIC &
LOGIC UNIT

(ALU)

A
D
D
R
E
S
S

D
E
C
O
D
E
R

CLOCK

ACCUMULATOR

OPCODE OPERAND
ADDRESS

JUMP
ADDRESS

INSTRUCTION REGISTERS

PROGRAM COUNTER

 LOAD PROGRAM
 INSTRUCTION COUNTER
 REGISTERS EXECUTE CONTROL

OPCODE IN

 ACCUMULATOR
INSTRUCTION REGISTER CONTROL CONTROL ALU CONTROL MEM

OPCODE IN

Execute Circuitry

HALT - disables clock input
(not implemented)

INC

NOT

AND

OR

XOR

ADD

SUB

JEQ

JMP

JNE

JLT

JGE

JGT

JLE

LOAD

STOR

Opcode Register out bus enable
Operand Register out bus enable
Jump Address Register out bus enable

Memory Write

ALU ADD enable
ALU SUB enable
ALU INC enable

Accumulator out to ALU Left in enable
Accumulator out to Data Bus enable
Accumulator Write

Control Lines Out

Data Bus to ALU Right in enable
Data Bus to Accumulator in enable

O
p

co
d

e
R

eg
is

te
r

o
u

t
b

u
s

en
ab

le
O

p
er

an
d

 R
eg

is
te

r
o

u
t

b
u

s
en

ab
le

M
em

o
ry

 W
ri

te

A
LU

 A
D

D
 e

n
ab

le
A

LU
 S

U
B

 e
n

ab
le

A
LU

 IN
C

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 A
LU

 L
ef

t
in

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 D
at

a
B

u
s

en
ab

le
A

cc
u

m
u

la
to

r
W

ri
te

D
at

a
B

u
s

to
 A

LU
 R

ig
h

t
in

 e
n

ab
le

D
at

a
B

u
s

to
 A

cc
u

m
u

la
to

r
in

 e
n

ab
le

ALU Jump Comparison

Lo
gi

c
o

p
co

d
es

 n
o

t
im

p
le

m
en

te
d

Opcode bus in

Q

Q
SET

CLR

D

Clock in

Clock 1

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR

1

1

Execute in
(from fetch

circuitry)

Fetch out
(to fetch
circuitry)

Clock 2

Activate
opcode

Decode
and

execute
opcode

Q

Q
SET

CLR

D

Clock 3

Third
Clock for

AND, SUB,
and INC

Reset after
two clocks

Program Counter Write

P
ro

gr
am

 C
o

u
n

te
r

W
ri

te

Choose output
for third clock

Execute Circuitry

HALT - disables clock input
(not implemented)

INC

NOT

AND

OR

XOR

ADD

SUB

JEQ

JMP

JNE

JLT

JGE

JGT

JLE

LOAD

STOR

Opcode Register out bus enable
Operand Register out bus enable
Jump Address Register out bus enable

Memory Write

ALU ADD enable
ALU SUB enable
ALU INC enable

Accumulator out to ALU Left in enable
Accumulator out to Data Bus enable
Accumulator Write

Control Lines Out

Data Bus to ALU Right in enable
Data Bus to Accumulator in enable

O
p

co
d

e
R

eg
is

te
r

o
u

t
b

u
s

en
ab

le
O

p
er

an
d

 R
eg

is
te

r
o

u
t

b
u

s
en

ab
le

M
em

o
ry

 W
ri

te

A
LU

 A
D

D
 e

n
ab

le
A

LU
 S

U
B

 e
n

ab
le

A
LU

 IN
C

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 A
LU

 L
ef

t
in

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 D
at

a
B

u
s

en
ab

le
A

cc
u

m
u

la
to

r
W

ri
te

D
at

a
B

u
s

to
 A

LU
 R

ig
h

t
in

 e
n

ab
le

D
at

a
B

u
s

to
 A

cc
u

m
u

la
to

r
in

 e
n

ab
le

ALU Jump Comparison

Lo
gi

c
o

p
co

d
es

 n
o

t
im

p
le

m
en

te
d

Opcode bus in

Q

Q
SET

CLR

D

Clock in

Clock 1

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR

1

1

Execute in
(from fetch

circuitry)

Fetch out
(to fetch
circuitry)

Clock 2

Activate
opcode

Decode
and

execute
opcode

Q

Q
SET

CLR

D

Clock 3

Third
Clock for

AND, SUB,
and INC

Reset after
two clocks

Program Counter Write

P
ro

gr
am

 C
o

u
n

te
r

W
ri

te

Choose output
for third clock

0

0

0

0

0

0
0

0

0

0

1

0

0

Execute Circuitry

HALT - disables clock input
(not implemented)

INC

NOT

AND

OR

XOR

ADD

SUB

JEQ

JMP

JNE

JLT

JGE

JGT

JLE

LOAD

STOR

Opcode Register out bus enable
Operand Register out bus enable
Jump Address Register out bus enable

Memory Write

ALU ADD enable
ALU SUB enable
ALU INC enable

Accumulator out to ALU Left in enable
Accumulator out to Data Bus enable
Accumulator Write

Control Lines Out

Data Bus to ALU Right in enable
Data Bus to Accumulator in enable

O
p

co
d

e
R

eg
is

te
r

o
u

t
b

u
s

en
ab

le
O

p
er

an
d

 R
eg

is
te

r
o

u
t

b
u

s
en

ab
le

M
em

o
ry

 W
ri

te

A
LU

 A
D

D
 e

n
ab

le
A

LU
 S

U
B

 e
n

ab
le

A
LU

 IN
C

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 A
LU

 L
ef

t
in

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 D
at

a
B

u
s

en
ab

le
A

cc
u

m
u

la
to

r
W

ri
te

D
at

a
B

u
s

to
 A

LU
 R

ig
h

t
in

 e
n

ab
le

D
at

a
B

u
s

to
 A

cc
u

m
u

la
to

r
in

 e
n

ab
le

ALU Jump Comparison

Lo
gi

c
o

p
co

d
es

 n
o

t
im

p
le

m
en

te
d

Q

Q
SET

CLR

D

Clock in

Clock 1

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR

1

1

Execute in
(from fetch

circuitry)

Fetch out
(to fetch
circuitry)

Clock 2

Activate
opcode

Decode
and

execute
opcode

Q

Q
SET

CLR

D

Clock 3

Third
Clock for

AND, SUB,
and INC

Reset after
two clocks

Program Counter Write

P
ro

gr
am

 C
o

u
n

te
r

W
ri

te

Choose output
for third clock

0

0

0

0

1

0
1

1

0

0

0

0

0

JLT opcode

1 0 1 0 0

Opcode bus in

1 0 1 0 0

0

1 0

1

1

0
1

1
1

0
0

0
0

1

1

1

1

1

1

1

1

0

1

0

1
0

1
0

1

1

0

1

Execute Circuitry

HALT - disables clock input
(not implemented)

INC

NOT

AND

OR

XOR

ADD

SUB

JEQ

JMP

JNE

JLT

JGE

JGT

JLE

LOAD

STOR

Opcode Register out bus enable
Operand Register out bus enable
Jump Address Register out bus enable

Memory Write

ALU ADD enable
ALU SUB enable
ALU INC enable

Accumulator out to ALU Left in enable
Accumulator out to Data Bus enable
Accumulator Write

Control Lines Out

Data Bus to ALU Right in enable
Data Bus to Accumulator in enable

O
p

co
d

e
R

eg
is

te
r

o
u

t
b

u
s

en
ab

le
O

p
er

an
d

 R
eg

is
te

r
o

u
t

b
u

s
en

ab
le

M
em

o
ry

 W
ri

te

A
LU

 A
D

D
 e

n
ab

le
A

LU
 S

U
B

 e
n

ab
le

A
LU

 IN
C

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 A
LU

 L
ef

t
in

 e
n

ab
le

A
cc

u
m

u
la

to
r

o
u

t
to

 D
at

a
B

u
s

en
ab

le
A

cc
u

m
u

la
to

r
W

ri
te

D
at

a
B

u
s

to
 A

LU
 R

ig
h

t
in

 e
n

ab
le

D
at

a
B

u
s

to
 A

cc
u

m
u

la
to

r
in

 e
n

ab
le

ALU Jump Comparison

Lo
gi

c
o

p
co

d
es

 n
o

t
im

p
le

m
en

te
d

Opcode bus in

Q

Q
SET

CLR

D

Clock in

Clock 1

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR

1

1

Execute in
(from fetch

circuitry)

Fetch out
(to fetch
circuitry)

Clock 2

Activate
opcode

Decode
and

execute
opcode

Q

Q
SET

CLR

D

Clock 3

Third
Clock for

AND, SUB,
and INC

Reset after
two clocks

Program Counter Write

P
ro

gr
am

 C
o

u
n

te
r

W
ri

te

Choose output
for third clock

1

0

0

0

0

0
0

0

0

0

0

0

1

JLT opcode

1 0 1 0 0

1

0 1

1

0

1

11

1

1

1

1

0 1

0
1

1

Next Presentation:
Execution Sequence, individual clock cycles

End of Presentation

